

1

Assignment 11:List Manager

AP Computer Science

Mr Hanley

Assignment 11: List Manager

Ver: 3.01

Last Updated:1/16/2022 2:19 PM

The Hood

http://mrhanleyc.com/

2

Binary Ones Comp Twos Comp

Create your own list management program
Lists, lists, lists!

Playlists, friend lists, to do lists, password lists, they go on and on and on…
Fortunately, now that you are learning the art of software development,

you are going to create a list manager! also knows as a CRUD (create,
record, update, delete system)

Think of some sort of entity that you are going to keep track of in a list.

Examples include;
Colleges you are applying to, friend’s name and phone numbers and

addresses, concerts attended, local restaurants, encryption methodologies,
U2 songs, ski mountains, to do list, etc.

1. Develop a class that implements the Comparable interface

a. This class must have at least 5 fields or data elements
You may have only 3 Strings, other 2 FIELDS MUST BE

DIFFERENT!!!

b. While it is good OO design to have the variables private and the
methods public, you may allow public variables for convenience

c. Use good variable and method names (Charles, HiKC is not a

good variable name!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!arghhhhhhhhhh)

d. Provide at least 2 constructors!!!!

3

i. Usually a default or zero arg which sets the values to empty
or you can pick dummy fields like Jane Doe, 100 Main St.

etc.
ii. 5 arg constructor where each of the fields is passed in

e. Your compareTo method must be written to sort the

instances of this class with some complexity.

i. For example, you can’t just have a compareTo method that
compares names alphabetically

ii. Use a secondary data element when the first is equal

Example if(ranking == other.getRanking)){
 //rankings same, go to alphabetical

 return name.compareTo(other.getName())

iii. If you want to be able to sort on multiple criteria, you may

provide multiple classes that implement Comparator

iv. In this case, at least one of your classes that implement
Comparator must have some sort of complexity

f. Comment your class

2. Develop another class that allows you to manage a list of your first

class. This will have an ArrayList inside it and have methods that will;

a. Load the Text File
Read in data from a text file into the ArrayList, making an object

for each “record” read in and copying each “field” into that

4

record (this should happen each time the program starts)

b. Display the list
There are 2 ways to display the list:

i. Print each record on its own line.
1. Use the \t or the System.out.format command so the

columns line up
2. Put a number to the left of each record so you can refer

to them individually when you edit or delete!
3. Put this is a method so you can call it from edit or

delete to select which one to choose
4. DO NOT JUST USE A METHOD THAT PRINTS THE

FIELDS SEPARATED BY A PIPE!!!!
5. Have a heading for each field and print the actual data

on individual lines underneath the heading

6. I like to have the name of the author and the number of
records loaded and the data changed boolean printed in

my display

ii. Print each record on multiple lines
1. See the run through of Jon StreetFighter’s character

manager on my YouTube Channel

c. Sort the list according to the compareTo method or multiple sorts
using Comparator objects (May use Collections.sort here)

i. There are two different approaches to sorting

1. Use a compareTo for the records and sort based on
some sort of complexity.

a. For a restaurant, this could mean computing a

score for the restaurant based on food rating, cost

5

and consistency

d. Edit a record in the list (Update the fields)
e. Delete a record in the list

f. Save the list back to the text file (should prompt user if they
attempt to exit program without saving)

g. Archive the list to a separate file name for safety (when working
with files, it is ALWAYS a good idea to save a backup)

There are lots of different file formats you can use when writing
your ArrayList to the text file

My preferred version is as follows;

import java.io.*;

import java.util.StringTokenizer; //allows breaking a String into
fields

/*File could look like this

 McCarthy|Walter|255 Grapevine
Rd|Wenham|MA|01984|12000.00

 NaSmith|Courtney|7 Main St.|Clifton Park|NY|12065|18000.00
 Anderson|Trinity|957 First St.|Hermosa

Beach|CA|01954|19000.00
 */

Need to hit enter after last record in file so cursor sits on next line

//You read in one line of the file which represents a record, divided
by a

//symbol known as the delimiter, in this case the pipe |

6

BufferedReader input = new BufferedReader(new
FileReader("data.txt"));

 String line;

 //Attempt to read from the file, prime the pump
 line = input.readLine();

 while (line != null) {//goes to the end of file
 StringTokenizer st = new StringTokenizer(line, "|"); //| is the

delimiter
 //Now break up the line

 lname = st.nextToken();
 fname = st.nextToken();

 streetAddr = st.nextToken();
 town = st.nextToken();

 state = st.nextToken();

 zip = st.nextToken();
 salary = Double.parseDouble(st.nextToken());

 System.out.println("Here's our info " + fname + " " + lname +

" " +
 streetAddr + " " + town + " " + state + " " + zip +

 " " + salary); //obviously you must make and add
to list!!!!

 line = input.readLine(); //must be at end so when no data
while condition trips

 }
 input.close();

//That code MUST be surrounded by a try catch block
NOTE:Your menu must include your name and the type of list that

you are managing.

Example:

7

Welcome to the Ski Mountain List Database by mr Hanley

1 = Display Mountains
2 = Load in from Disk File

3 = Add a new Mountain
4 = Edit an existing Mountain

5 = Remove a Mountain
6 = Sort the List

7 = Save the List Back to Disk File
8 = Exit this program

When someone chooses, delete or edit, MAKE SURE they know

what to type, Many of the programs I have run are very UNCLEAR.
For example, in this case,

5

Which mountain to delete?
1 = Killington

2 = Mount Snow
3 = Gore Mtn.

4 = Sunday River Resort
3

Removing Gore Mtn!
1

Name Trails Cost Distance Rating
1 Killington 121 92 121 miles 8.9

2 Mount Snow 75 78 101 miles 8.1
3 Sunday River Res 89 88 211 miles 8.5

MAKE SURE PEOPLE CAN SAVE THEIR ARRAYLISTS FROM THE

MENU WHEN THEY WANT TO MAKE A SELECTION. READING

8

IN CAN BE DONE IN THE BEGINNING OF THE PROGRAM ONLY
OR AS A MENU OPTION

3. Rakowsky Factor:
For those of you using the Scanner to read in via nextLine and then

nextInt or nextDouble, see the following code example:

while(inFile.hasNextLine()) {
 String tempName = inFile.nextLine();

 int tempAge = inFile.nextInt();

 …more reads
 if(inFile.hasNextLine()){

 inFile.nextLine(); //Skip the blank that the Scanner will choke
on!

 }

}
4. You may use Swing or console for this project

5. BONUS: Encrypt your data using Blowfish encryption

Project Name Assign 11 List Manager

Class 1 Name Restaurant.java (Example)

Class 2 Name RestManager.java (Example)

Class 3 Name Possible Comparator Classes (Optional)

Text file 1 name(Needs

to be in project folder

NOT src or classes

Restaurants.txt

Text file 2

name(Needs to be in
project folder NOT src

or classes

Restaurants.bak

9

Restaurants.txt text file stores information about restaurants
COULD look like this;

Forno Bistro|Italian|7.5|Moderate|Chic Atmosphere|Saratoga Springs
Bellinis|Italian|8|Moderate|Good Atmosphere|Clifton Park

….
read in at beginning of program into arraylist

write out at end of program in order to allow data to persist = persistency

write out a copy just in case to a separate file (files can become corrupted)

FoodGenre.java

enum FoodGenre {Italian,Chinese, American, Indian, BarbQue};

Restaurant.java

public class Restaurant implements Comparable{
 public String name;

 public FoodGenre gen;
 //etc

 public int compareTo(Object o) { //Fixed 1/15/2016

 Restaurant other = (Restaurant) o; //type cast so we can
compare

…

 }
}

10

RestManager.java

public static ArrayList<Restaurant> list = new ArrayList<Restaurant>();

public static void main() {

//Has a menu which allows control of ArrayList
}

Remember to READ in all of your elements

11

Entity Class
-compareTo 20
-good variable names with at least 5 data
fields

10

main class or Frame for GUI 0
-menu and options are user friendly and easy
to follow

15

 0

-reads from text file 15
-sorts based on compareTo 15
-edits 15
-adds 15
-deletes 15
-displays 15

-7 if you just use fields
separated by pipes

Use System.out.format
with codes for field widths

-saves 15
-archives(must be a separate file) 10
-warns user if attempting to exit program
without saving unsaved changes

5

-comments and variable names 10
TOTAL 175
BONUS 20

12

https://www.youtube.com/watch?v=dQw4w9WgXcQ

