

1

Assignment 7:Developing Classes

Binary Ones Comp Twos Comp

In this project, we will be exploring object oriented programming by

creating some simple classes and then writing tester classes to use
them to create objects…let’s go!!!!!!

AP Computer Science

Mr Hanley

Developing Classes

Ver: 3.111111119

Last Updated:11/16/2021 3:04 PM

The Hood

http://mrhanleyc.com/

2

Keep in mind in this paradigm shift there will be some differences in
coding philosophy.

1. OO classes will NOT have a main method, this
is only for test classes

2. OO classes will communicate via messages, by
return types and parameters, they will NOT use

System.out.println

3. OO classes are written to be reused in the

most general way possible

4. Testers will use the public interface of the OO

classes by calling constructors, mutators and
accessors.

3

Phase 1: During Phase 1 We will be writing some
classes and then a tester for each!

Make a new project called Assign7_OOPractice

 Let’s start with a Car class.
a. Implement a class Car with the following properties. A car

has a certain fuel efficiency (measured in miles/gallon or
liters/km – pick one) and a certain amount of fuel in the gas

tank. A Car also has a name which is typically the

manufacturer and model like Chevy Trailblazer. The
efficiency is specified in the constructor(one arg), and the

initial fuel level is 0.

Supply a method drive that simulates driving the car for a
certain distance, reducing the fuel level in the gas tank, and

methods getGas, returning the current fuel level, and addGas
to tank up.

Example usage.
Car myBeemer = new Car(29); //29 miles per gallon

myBeemer.addGas(20); //tank 20 gallons
myBeemer.drive(100);

System.out.println(myBeemer.getGas()); //print current
fuel

Must have a one arg constructor that takes in the fuel

efficiency!
If you want to have more constructors, you are encouraged

to.

4

b. Write the CarTester class. This will have a main method and
will create a couple of Car objects and then set their variables

by calling addGas and drive.
Use your zero arg and one arg constructor

Example output:

Here is the name:Honda Accord
Adding 5 gallons

Driving 100 miles...
--

Here is the new amount of gas 1.6666666666666665

 Write a Student class. (separate file in same project)
For the purpose of this exercise, a student has a name and a total

quiz score(points). Supply a one arg constructor that accepts the

name and a default(zero arg) constructor that sets the name to “”.
Supply methods getName(), addQuiz(int score), getTotalScore()

(this is the total points) and getAverageScore() (should return an
int rounded to the nearest whole number. IF THE STUDENT HAS

NO QUIZZES, RETURN -1 SO THE CLIENT PROGRAM CAN PRINT
NO QUIZZES)) To Compute the average score, you will need to

store the number of quizzes that the student took. (Don’t worry
how many points they are worth, just calculate the average).

Supply a clear() method that clears the gradePoints and quizzes
taken back to 0 but leaves the name the same.

Usage
Student s = new Student(“Billy”);

s.addQuiz(70);
s.addQuiz(84);

s.addQuiz(100);

System.out.println(s.getTotalPoints()); //prints 254

5

System.out.println(s.getAverageScore()); //prints 85
s.clear();

System.out.println(s.getTotalPoints()); //prints 0
System.out.println(s.getAverageScore()); //returns -1 so client

can print NO QUIZZES OR SOME OTHER MESSAGE!!
a. Make a StudentTester Class(just a main method and create a

Student and run through the methods as above)

 Write a Planet class (models an INDIVIDUAL planet in our solar
system)

A Planet in our solar system has a name, a number of earth days
to orbit the Sun. If we indicate an initial position in the

constructor, we should be able to predict a number of complete
rotations around the Sun that the planets have made in “earth

days”. For example, if we initialize all 8 or 9 planets at day 1. By

Day 500, some will have orbited the sun and some may still be
working on their first orbit. For each planet, have them keep

track of the number of days passed, the number of complete
revolutions and the number of days towards the next revolution.

Make a PlanetTester class that creates two planets, Earth and

Mars and add 500 days of rotation to them. This is what should
happen…

Planet p1 = new Planet("Earth",365.26);
Planet p2 = new Planet("Mars",686.98);
p1.addDays(500);
p2.addDays(500);
System.out.println("Earth Progress " + p1.getNumOrbits() + "
orbits " + p1.getDaysTowardNext() + " days towards next
orbit");
System.out.println("Mars Progress " + p2.getNumOrbits() + "
orbits " + p2.getDaysTowardNext() + " days towards next
orbit");

6

Output
Earth Progress 1 orbits 134.74 days towards next orbit
Mars Progress 0 orbits 500.0 days towards next orbit

 Write a class of your own choosing…pick some topic and name

your class appropriately

Ideas;

Your class must include at least two pieces of data.

You must have at least 2 constructors.

Your class must have some sort of calculation or logical algorithm
similar to the Employee, Car, Student and Planet.

Suggestions;

Violin: has a maker, date manufactured and condition.
getValue is some combination of how old, the maker and

condition

Product for Sale: has a price and description.
Has a method for discounting depending upon certain conditions

Bank Account: Has a balance and an owner name

Has a method for computing monthly interest based on balance
and rate(monthly interest increases the balance when it is

applied)

College Admission: Has a percentage of students allowed in out of
state and in state. Can compute different tuitions for out of state

and in state.

7

Cylinder: Has a radius and length.
Can compute volume, can increase and decrease in size.

Given a desired volume and radius, can set up length.

Pizza: Can have up to 5 toppings. Can return true or false if it is
Vegetarian friendly by observing toppings. Can specify specialty

requests in constructor. For example, new Pizza(“MeatLovers”)
would result in the toppings being automatically assigned. Same

for new Pizza(“Chicken Bacon Ranch”).

Risk Game Territory: Based on the traditional board game, one of
the territories you can conquer. Has a name, associated

Continent and between 1-5 adjacent territories. Unsure of what
methods would be???

a. Write a Tester for your class

Phase 2: Add fancy heading sections in each of
your classes
Step1: Get your NetBeans IDE editor ready by setting up some spicy

code templates. This is found under Tools…Options Editor, Code
Templates

8

We will be using code templates for instance variables, constructors,
constants, mutators, accessors and static variables.

Let’s start with instance variables, sometimes called fields.

Click on the new button and let’s create a code template for ins

When you do it, TAB the second two rows like this example

9

//--
//------ I N S T A N C E V A R I A B L E S / F I E L D S --------
//--

Constructors Heading->

Click on the new button and let’s create a code template for con
//
/////////////// C O N S T R U C T O R S ///////////////
//

Constants Heading ->

Click on the new button and let’s create a code template for const
//CC
//CCCCCCCCCCCC C O N S T A N T S CCCCCCCCCCCCCCCCCCCCCC
//CC

Mutators Heading ->

Click on the new button and let’s create a code template for mut
//MMM
//MMMMMMMMMMMMMMM M U T A T O R S MMMMMMMMMMMMMMMMMMMMMMMM
//MMM

Gangnam Style Constructor Heading ->(don’t ask, just go with it!)

Click on the new button and let’s create a code template for cong
//------|+@-CC-|+@------

10

//------|+@-CCCCCCCCC C O N S T R U C T O R S CCCCCCCC-|+@------
//------|+@-CC-|+@------

Gangnam Style Mutator Heading ->

Click on the new button and let’s create a code template for mutg
//<M><M><M><M><M><M><M><M><M><M><M><M><M><M><M><M><M><M><M><M><M>
//<M><M><M><M><M><M> M U T A T O R S <M><M><M><M><M><M>
 //<M><M><M><M><M><M><M><M><M><M><M><M><M><M><M><M><M><M><M><M><M>

Accessors Heading ->

Click on the new button and let’s create a code template for acc
//AAA
//AAAAAAAAAAAAAAAAAAAA A C C E S S O R S AAAAAAAAAAAAAAAAAAAAAAA
//AAA

Statics Heading ->

Click on the new button and let’s create a code template for sta
//++
//++++++++++++ S T A T I C V A R I A B L E S ++++++++++++++++
//++

System.out.print template ->
While we’re at it, isn’t it a pain in the bootie that you can’t use a template for
System.out.print ? You have to use the System.out.println and then erase the ln!

Not any more, add a so code template, you know what to do, make it System.out.print();

taking a look at the System.out.println() template I learned
something….System.out.print("${cursor}");
//They put a ${cursor} inside the “ ” Do you know why they did this?

I do, it’s a macro to tell NetBeans to place the cursor inside the “ “ so you can actually type
whatever you want to print out immediately!! How cool is NetBeans!!!!!!!!!!!!!

Make sure all 4 classes, Car, Student, Planet and
whatever your custom class looks similar to this;
/**
 * ~~~
 * S-h-e-n-e-n-d-e-h-o-w-a--H-i-g-h--S-c-h-o-o-l--T-e-c-h-n-o-l-o-g-y--D-e-p-t
 * ~~~
 * FILE: Employee.java
 * DATE: Nov 3, 2014 Original
 * AUTHOR: mr Hanley
 * VERSION: 2.1
 * PURPOSE: Employee problem from Big Java
 *
 * ~~~
 *

11

 * m-r-h-a-n-l-e-y-c-.c-o-m~~~~~~~~~~t-e-a-m-2-0-.-c-o-m~~~~~~~~~~~~~~~~~~~~~~
 */
import java.text.DecimalFormat;

public class Employee {

 //--
 //-------------- I N S T A N C E V A R I A B L E S --------------
 //--
 private double salary;
 private String name;

 //
 /////////////////// C O N S T R U C T O R S /////////////////
 //

 public Employee() {
 name = "";
 }

 public Employee(String na, double sal) {
 name = na;
 salary = sal;
 }

 //AA
 //AAAAAAAAAAAAAAAAA A C C E S S O R S AAAAAAAAAAAAAAAAA
 //AA

 public String getName() {
 return name != null ? name : " ";
 }

 public double getSalary() {
 return salary;
 }

 //MM
 //MMMMMMMMMMMMMMMMM M U T A T O R S MMMMMMMMMMMMMMMMM
 //MM

 public void setName(String n) {
 name = n;
 }

 /**
 * setSalary preconditions: sal >0
 *
 * @param sal salary which must be 0 or positive
 *
 */
 public void setSalary(double sal) {
 if (sal >= 0) {
 salary = sal;
 }
 }

 /**
 *
 * @param byPercent a number > 0 which represents the raise to annual salary

12

 */
 public void raise(double byPercent) {
 salary += salary * byPercent / 100;

 }

}

Phase 3: Unit Testing: Did you know that Junit is
integrated into NetBeans and you can make a
Junit test for each class that you create?
Make a Junit class for each of the Car, Student, Planet and Your

Custom Class. See Mr. Hanley’s website for examples.

1. Phase 4: Integrate your classes into the
Moosk and demonstrate all 4 to your teacher.

Phase 5: Integrate the IntVerifier,
DoubleVerifier and BoxPrint into your
assignment 7.
The DRY principle of computer science says DON’T REPEAT YOURSELF!
You may be tempted to copy your work from the Verifier assignment into this project
but then you will have 2 copies of it and then have to manage both of them.

a. Go back to your Verifiers project and open up your boxPrint logic. Change the
limitation on print size to 100 so you can boxPrint longer phrases.

b. Go back to Assign7_OOPractice project and choose Project…Project Properties
c. Click on the Libraries TreeList Option
d. Click on Add JAR/Folder and navigate to your Verifiers project

13

e. You need to click on the build/classes folder of your Verifiers project(this arrow
points to where you add JAR/Folder

2. Now your Assignment 7 tester class can utilize IntVerifier and DoubleVerifier

3. Go to the menu method of the moosk (EmpCarStuClientTemplateV2) and add an

option 0 to print out your name and the period you have java
You should be able to do CWHUtilites.boxPrint(“Mr. Hanley Period 5”);

4. Let’s use your IntVerifier to make sure that the main menu choice is in an acceptable
range.

i. Make a global variable for an error sound effect so we can use it
throughout the program.
Load up a sound file like Explosion.wav using the cookbook inside the
menu method.

ii. Make an IntVerifier called mainMenuVer using the sound file and give the
appropriate range (remember we print our name and period we have
class with option 0).

iii. Pass the Scanner object to the IntVerifier so it can use your scanner to
read the keyboard.

iv. Comment out the input.nextInt() command

v. Replace it with your mainMenuVer.readInt() command to gather in the
main menu input to select an option

14

vi. Create a DoubleVerifier for reading in the number of earth days to orbit
the sun when recreating a planet
Use a range of 1-1000000 (1 million).

vii. Create an IntVerifier for reading in the distance you are going to drive
when you prompt the user in the moosk for how far the user wants to
drive their vehicle.
Use a range of 0 (exclusive) to 1000 miles(inclusive)

Project Name Assign7_OOPractice

Class 1 Name Car

Class 2 Name CarTester

Class 3 Name Student

Class 4 Name StudentTester

Class 5 Name Planet

Class 6 Name PlanetTester

Class 7 Name Depends upon Custom Class, could be Violin,
Product, Cylinder, RiskTerritory

Class 8 Name ViolinTester or CylinderTester

Class 9 Name Car_Junit1

Class 10 Name Student_Junit1

Class 11 Name Planet_Junit1

Class 12 Name Violin_Junit1 or Cylinder_Junit1

Class 13 Name EmpCarStuClientTemplateV1.java

15

Rubric Car

2 Constructors 10

drive() method 10

addGas() 10

Comment headers 5

CarTest logic 10

TOTAL 45

Rubric - Student

2 Constructors (0 arg and 1 arg) more OK 10

addQuiz() 10

getTotalScore() 10

getAverageScore() 5

clearGrades() 10

Student Test logic 10

Comment headers 5

TOTAL 60

RUBRIC

RUBRIC

16

Rubric - Planet

O arg constructor, 2 arg constructor for name and
daysToRevolve around sun

10

addDays(correctly computes the number of revolutions
and extra days towards next

25

Integrate into Moosk 20
Comment headers 5
TOTAL 60

Rubric – Custom Class

Has at least two constructors 10

Has some math logic associated 15

Integrated into Moosk with menu and 3
objects

20

Comments 5

TOTAL 50

Rubric – Using Verifiers

boxPrinting the Author and Period you

have AP Java

10

IntVerifier for Main Menu 20

Use DoubleVerifier Somehow 20

TOTAL 50

RUBRIC

RUBRIC

RUBRIC

17

https://www.youtube.com/watch?v=dQw4w9WgXcQ

