

1

AP Computer Science

Mr Hanley

Assignment 8 Class Enhancements

Ver: 2.01

Last Updated:12/9/2021 10:30 PM

The Hood

http://mrhanleyc.com/

2

Assignment 8:Class Enhancements
Binary Ones Comp Twos Comp

1. The toString method is inherited from Object, which all java
classes are descendants from. Redefine toString for the classes

you developed to display the information from each object. Test
the methods using your test classes.

Here are some example toString calls for Car, Student, Planet and
Activity

Testing Car toString()...
Name: Honda Accord MPG: 30.0 Fuel: 1.6666666666666665

Testing Student toString()...

Shikhar
total points: 272
total quizzes 3
average: 90

Testing Planet toString()...
Earth 365.26 4 239.0

3

2. Class variables are used to keep data that is shared among all
instances of a class. MUST BE PUBLIC! Add class variables to

each of your classes.

This example shows how to use a static variables in an employee
class where each Employee has a name and a salary.

It also demonstrates toString and throwing exceptions.

public class Employee_with_assign8_changes {

 //%%
 //---------------- S T A T I C V A R I A B L E S ---------------
 //%%

 //static variable to keep track of total employees and salaries
 public static double totSal = 0;
 public static int totEmp = 0;
 //--
 //---------------- I N S T A N C E V A R I A B L E S ------------
 //--

 private double salary;
 private String name;

 //------|+@-CC-|+@------
 //------|+@-CCCCCCCCC C O N S T R U C T O R S CCCCCCCC-|+@------
 //------|+@-CC-|+@------
 public Employee_with_assign8_changes() {
 totEmp++;
 }
 public Employee_with_assign8_changes(String na, double sal) {
 //Increase the total number of employees
 totEmp++;
 //Increase the payroll
 totSal = totSal + sal;

 name = na;
 salary = sal;
 }

 //AA
 //AAAAAAAAAAAAAAAAA A C C E S S O R S AAAAAAAAAAAAAAAAA
 //AA

 public String getName(){
 return name!=null ? name : " ";
 }
 public double getSalary(){
 return salary;
 }

4

 public String toString() {
 DecimalFormat df = new DecimalFormat("###,###,###");
 String salDisplay = df.format(salary);
 salDisplay = "$"+salDisplay;
 return "Name :" + name + "\nSalary:" + salDisplay;
 }

 ////<M><M><M><M><M><M><M><M><M><M><M><M><M><M><M><M><M><M><M><M><M>
 ////<M><M><M><M><M> M U T A T O R S <M><M><M><M><M>
 ////<M><M><M><M><M><M><M><M><M><M><M><M><M><M><M><M><M><M><M><M><M>

 public void setName(String n){
 name = n;
 }
 /**
 * setSalary
 * preconditions: sal >0
 *
 * @param sal salary which must be 0 or positive
 *
 */
 public void setSalary(double sal) throws IllegalArgumentException {
 double oldSal = salary;

 if (sal >= 0) {
 salary = sal;
 totSal -= oldSal; //subtract old salary from total salary
 totSal += salary; //add in their current salary

 } else {
 throw new IllegalArgumentException("Can't have negative salaries");
 }
 }
…more stuff not shown
public class EmployeeTest1
{
 public static void main(String[] args)
 {
 Employee_with_assign8_changes e1 = new Employee_with_assign8_changes("Pat LaCourse",1e5);
 System.out.println(e1);

 Employee_with_assign8_changes e2 = new Employee_with_assign8_changes("Susan
Schwarz",2.5e5);
 System.out.println("Total Employees:"+Employee_with_assign8_changes.totEmp);
 System.out.println("Total Payroll:"+Employee_with_assign8_changes.totSal);

 try {
 e1.setSalary(-10);
 }
 catch(Exception e) {
 System.out.println(e.toString());
 }
 }
}

5

Output

Name :Pat LaCourse
Salary:$100,000
Total Employees:2
Total Payroll:350000.0
java.lang.IllegalArgumentException: Can't have negative salaries

Suggestions for appropriate class variables:
Car: make a static for the totalMiles driven for each car….create two

cars and then drive each one. Print out your static variable from
your tester and make sure the total miles are added in.

Student: Make two static variables totalPointsAllStu and

totalQuizzesAllStu. Keep track of all points earned for all students
and all quizzes taken for all students. Print out the class average.

Don’t forget when clearing a students grades to subtract their scores
from the totalPointsAllStu as this impacts the class variable. Same

with totalQuizzesAllStu.

Planet: If we have 8 (or 9) planets in our solar system, there is no

need to store the number of days that have passed in the simulation
8 or 9 times. Make the daysPassed a static so all planets share this

variable (addDays() however now cannot update this variable since
we call addDays() for each planet.

Here is how I handled this issue:
From my tester(I allow the tester to manually update the static)
System.out.println("Please enter in a number of dayz to add");
double dayz = input.nextDouble();

Planet.currentEarthDay = Planet.currentEarthDay + dayz;

Custom: Think of one or two statics for you custom class-> print
them out from your tester with tester by

<YOURCUSTOMCLASS>.staticVarName

6

Test from the test classes.

NOTE: although these are not covered on the ap exam, you can write

a method for a class that will get called right before the object is
destroyed or garbage collected.

public void finalize()
{

 //reduce object count here
}

UPDATE: 11/5/2015: Unfortunately finalize does not get called with

any certainty and you cannot force it to be called. So when looking
at total salaries for example, they will not necessarily get reduced

even though a reference goes out of scope

3. Add exception handling to each of your classes.
Pick a mutator method and have it throw an exception when

someone tries to set a value that is out of range. See the setSalary

for Employee above.
Add a try catch block to your tester so it will catch the

IllegalArgumentException

7

4.

Project Name Reusing Assign7_OOPractice

Class 1 Name Modifying Existing Car, Student, Planet and Custom

Class 2 Name Modifying Tester classes

Redefine toString in 4 classes 20

Test toString 5

Define class variables in 4 classes
1 for Car, total miles driven

2 for Student totalPointsAllStu and
totalQuizzesAllStu

1 for Planet daysPassed
At least one for Custom Class

10

Modify 1 setter or Constructor in each class to

throw an exception

20

Test exceptions 10

Comments 15

TOTAL 110

8

https://www.youtube.com/watch?v=dQw4w9WgXcQ

