

How to Turn in Your CRUD

For this application, you are going to create a WORD document with an entire run through of your

program…..YOUR FILE NAME MUST BE CALLED Crud_Output_Jon_Street.(Unless you are not

Jon Street)

Make sure you have at least 4 records saved to your disk file.

Your word document will look like this…..

Name: Jon Street AKA StreetFighter. Period: 7 APCS APCS Java CRUD RunThrough

Purpose:

This program’s purpose is to allow the user to manage a list of characters from an adventure

game.

Each character has stats that are kept track of;

name, class, gender, level (start at level 1 and go up) and experience (0-99).

Once a character reaches 100 experience points, they go up to the next level and experience

goes back to 0.

Characters will be loaded in from the local file system.

The user can display them, edit any of the fields in them, add new characters and remove

characters from the list.

Saving to disk and reading in from disk as well as archiving to a backup is supported.

compareTo

My compareTo method allows two characters to be compared mathematically.

The way is works is that levels are compared.

Higher levels will get moved to the front of the ArrayList when the Collections.sort logic is

executed.

If the levels are the same, the compareTo resorts to comparing names alphabetically by ASCII

code.

My demonstration below will show that newly added characters add by default at the end but that

when Collections.sort executes, characters with higher levels will move to the top.

Test Sequence for CRUD Application

1. Open your

Application

2. Read in text file MUST HAVE 4 records

already out there

3. Display See the 4 records

4. Delete an item Need to present the user with a list so they can see what

to choose. I prefer to see a message like “Jeff has been

deleted.”

5. Display One less should be there.

6. Edit an item Allow user to choose which field to edit

7. Display Should show altered record.

8. Add a new item Type in new data MAKE SURE IT BELONGS HIGHER UP

WHEN SORTED (don’t make it just garbage input) Add

at end

9. Display Show new record at bottom

10. Sort Make sure the order is CHANGED after sort (I prefer

some sort of message like “**List is now sorted by level

then alphabetical by name**”

11. Optional 2nd Sort

If you used a

Comparator and

sort on a separate

criteria

Run your next sort and then display your output, add a

comment in your word doc describing the new order of

the list.

12. Display Should show updated positions.

13. Save Either save to both normal file and archive at once or

make separate menu options.

14. Optional Separate

Archive

15. Display

16. Change a record

somehow (either

delete, add a new

or edit a record)

17. Try to quit the

program

The program should warn you that you are about to lose

unsaved data…choose that you want to save

18. Exit java program

19. Restart and Read in

20. Display Should have records that were updated as of the last

run of the program.

1st Run Through of CRUD

(must be red in font size 28 font)

<Perform Steps 1-18 and paste into word, each section must be preceded by a red font 28

heading>

2nd Run Through of CRUD

<Perform Steps 19-20 and paste into word>

Take a screen shot of your directory in your project showing your .txt file and backup file names

Hit printscreen and paste it into MS Word so I can see both file names

 //Copy Some of your comments to earn your 10 points for comments at the bottom

 String result = "";

 // this will reference one line at a time

 String line = null;

 try {

 // FileReader reads text files in the default encoding.

 FileReader fileReader = new FileReader(fileName);

 // always wrap FileReader in BufferedReader.

 BufferedReader bufferedReader = new BufferedReader(fileReader);

 line = bufferedReader.readLine();

 while (line != null) {

 result += line + "\n";

 line = bufferedReader.readLine();

 }

 // always close files.

 bufferedReader.close();

 // exception handling

Paste in your compareTo method in here: (or each of your Comparator classes)

public int compareTo(Object o) { //Getting an object to compare said object to

 Character other = (Character) o; //Casting the character

 //First check levels....

 if(level == other.level){

 //if levels same, then go to name as secondary ordering

 return name.compareTo(other.getCharacterName());

 }

 else return level - other.level; //Checking to see which level is greater and if it needs sorted

 }

