 [image: http://www.fi.edu/learn/case-files/eckertmauchly/ENIAC_Image_1.jpg] [image:] Advanced Placement Computer Science
Shenendehowa HS mr Hanley
Unit 1: Comp Sys - Numeric String Rep Num Sys
[bookmark: _GoBack]Lesson: Integer VS FloatingPoint, Rounding
Last Updated: 9/11/2017

Lesson: Parameter Passing Mechanisms
Last Updated: 100/11001/1100

		
									
Integer types:

Integers are stored in a ___________________________ inside the computer

Finding the maximum and minimum values for the integer types;

Floating Point Variables:

Here’s where some problems will surface!!!!!!!!

Representing floating point values must be of the form:

For some numbers, this is no problem

For other values, we are in TROUBLE

Take as an example, .5

As mathematical calcs add up, errors can be seen

Round-Off Problems with Computers (Affects C++, Java, ANY Language)
 ==================
 One of the problems with floating point numbers is round-off. Round off errors occur when attempting to represent certain numbers in any number base. For example, 1/3 is not exactly representable in base ten, while 1/10th is easily representable. But since we're dealing with computers, we are specifically in
base two numbers. As opposed to base ten, 1/10th is not exactly representable in base two. For example, the fractional portions of base two are: 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512
The numbers 1/2, 1/4, 1/8, all powers of two, are exactly representable in a computer. But since 1/10 lies between 1/8 and
 1/16, it is not exactly representable using binary notation. So internally the computer has to decide which fractional binary portions to add together to sum close to 1/10. For example:
 1/2 	1/4 	1/8 	 1/16 	 1/32 	 1/64 	 1/128 	 1/256 	 1/512
 0 	0 	0 	1 	 1 	1 	 0 	 0 	0
 this adds up to: 0.1093 which is close to 0.1000 but could easily be rounded
 to 1.1 so the computer internal algorithm must try to find another combination of binary fractions which come closer to
0.1000 When it's internal algorithm is satisfied, it will have a number which is CLOSE to 1/10th but not EXACT. This inexactness is known as ROUND-OFF error.

Floating Point Round Off Error

 Round off error is especially noticable in the smallest
 floating point data type available: the float. The float data
 type is four bytes in length, and uses these bytes to hold the
 mantissa, exponent, and sign of the number. The following
 program demonstrates that round off error with floating point
 number's occur even with simple assignments:

 void main()
 {
 float number = 123.45;
 cout << number << endl;
 }
 The round off error can be significant when doing multiple or
 iterative calculations, as the following program illustrates:
 void main()
 {
 float anumber = 1.693 / 10.0;
 float original = 1000000.00;
 int i, j;
 for (i=0; i<10; i++)
 {
 original = original * anumber;
 }
 for (j=0; j<10; j++)
 {
 original = original / anumber;
 }
 cout << original << endl;
 }
 At the end of ten multiplications and divisions, the original
 number is off by a 0.1875. Increasing the size from a 4 byte to
 8 byte real improves things somewhat, as the following code
 illustrates:

 void main()
 {
 double anumber = 1.693 / 10.0;
 double original = 1000000.00;
 int i, j;
 for (i=0; i<10; i++)
 {
 original = original * anumber;
 }
 for (j=0; j<10; j++)
 {
 original = original / anumber;
 }
 cout << original << endl;
 }
 The difference between the original and calculated original are
 only off by 0.0625 with doubles.

1 | Page

image1.jpeg

image2.png

