 [image: http://www.fi.edu/learn/case-files/eckertmauchly/ENIAC_Image_1.jpg] [image:] Advanced Placement Computer Science
Shenendehowa HS mr Hanley
Unit 4: Object Oriented Programming
Lesson: ClassesFILLED_OUT
Last Updated: 10/24/2017

Lesson: Parameter Passing Mechanisms
Last Updated: 100/11001/1100
Advanced Placement Computer Science
Unit 4: Object Oriented Programming
Lesson: OO Programming
Last Updated: 11/1/2013

		

Modern programs are often organized into separate classes each with its own responsibilities.

This began in the 1980’s with the desire to recreate more reusable components

Classes act as software blueprints, allowing programmers to use some classes to create multiple objects, which contain their own identity and data

While there is only one class, one can create multiple objects or instances

	Class
	Object

	One definition, contains logic that all objects share. Sometimes called behaviors.
	Can have multiple instances, each has its own unique data. Share all behaviors via the class

	Some classes are built on top of existing classes, this is called inheritance
	Executing programs use objects primarily, not classes. Objects send each other messages.

	
	State of an object =
values of its instance variables

How does a typical class manage information? There are 4 things inside classes

public class SomeClass {

	//Variable Section, typically private so only this class can modify
//These are called instance variables
 	private int age;
private String name;
	//Constructors, special methods that instanciate objects of this type
	//NOTE: constructors NEVER have a return type
	public SomeClass() { //o arg constructor
age = 0;
name = “”;
}
	public SomeClass(String nm) {//1 arg constructor
age = 0;
name = “”;
}
	//Accessors – must be public
	//Accessors give read only access to the private variables inside of an object
	public int getAge() {
		return age;
}
	//Mutators – must be public
	//Mutators change the state of the object in some way
	public void setAge(int a) {
		if (a > 0) {
		 age = a;
		}
	}
}
public class UserOfSomeClass {
 public static void main(String[] args) {
 SomeClass s1 = new SomeClass(); //instanciate an object called s1
 s1.setName(“Arthur”);
 s1.setAge(16);
 System.out.println(s1.getAge());
 //Use the overloaded constructor to create an object for s2 named “Sara”
 //Set her age to 17
 //Print out her information
	SomeClass s2 = new SomeClass(“Sara”);
	s2.setAge(17);
	System.out.println(s2.getName() + “ “ + s2.getAge())
}

Access specifiers
private
Only available to members of the class (ie methods defined INSIDE this class)

public
Available to both class members and other classes

protected
Only available to child classes (will learn this later in the year)

What is a constructor?
A method with the exact same name as class and NO return type
Creates new instances of a class by setting up the state variables

What is a member variable?
A member variable is a global variable declared inside of a class
It stays around as long as the object does
It holds the state of the object

What are overloaded methods?
Overloaded methods have the same name but different parameters
They are common for constructors, where there are different options specified when starting up new objects of a particular class

For example, the following structure may apply to a java program;
FILE: Client.java
Contains: main method, which will use 3 Contacts called c1, c2 and c3
main() starts the program, creates three objects and displays their information
FILE: Contact.java
Contains: no main method, has variables which pertain to a cell phone contact

Had students do this example in class
public class Contact	{ //Represents a cell phone contact (Name and Phone Number)
1)
2)
3) 	private String name, phoneNum;
4)
5)
6) 	public Contact(){
7) 		name = “”;
 			phoneNum = “”;
}
8) //Accessors
9) public String getName(){
10) 	return name;
11) }
12) public String getPhoneNum(){
		return phoneNum;
13) }
14) //Mutators
15) public void setName(String s){
16) 	name = s;
	}
	public void setPhone(String ph){
		phoneNum = ph;
	}
}

[bookmark: _GoBack]

 }
public class Client {
 	public static void main(String[] args) {
 	Contact c1 = new Contact();
 	c1.setName(“Liam Morris”);
 	c1.setNumber(“123-555-1212”);
 }
}						
3 | Page

image1.jpeg

image2.png

